Activity

  • Clemensen Hastings posted an update 3 weeks, 3 days ago

    In multicellular organisms, neurons integrate a diverse array of external cues to affect downstream changes in organismal health. Specifically, activation of the endoplasmic reticulum (ER) unfolded protein response (UPRER) in neurons increases lifespan by preventing age-onset loss of ER proteostasis and driving lipid depletion in a cell non-autonomous manner. The mechanism of this communication is dependent on the release of small clear vesicles from neurons. We find dopaminergic neurons are necessary and sufficient for activation of cell non-autonomous UPRER to drive lipid depletion in peripheral tissues, whereas serotonergic neurons are sufficient to drive protein homeostasis in peripheral tissues. These signaling modalities are unique and independent and together coordinate the beneficial effects of neuronal cell non-autonomous ER stress signaling upon health and longevity.Up-down states (UDS) are synchronous cortical events of neuronal activity during non-REM sleep. The medial entorhinal cortex (MEC) exhibits robust UDS during natural sleep and under anesthesia. However, little is known about the generation and propagation of UDS-related activity in the MEC. Here, we dissect the circuitry underlying UDS generation and propagation across layers in the MEC using both in vivo and in vitro approaches. We provide evidence that layer 3 (L3) MEC is crucial in the generation and maintenance of UDS in the MEC. Furthermore, we find that the two sublayers of the L5 MEC participate differentially during UDS. Our findings show that L5b, which receives hippocampal output, is strongly innervated by UDS activity originating in L3 MEC. Our data suggest that L5b acts as a coincidence detector during information transfer between the hippocampus and the cortex and thereby plays an important role in memory encoding and consolidation.Immune responses differ between women and men, and type I interferon (IFN) responses following Toll-like receptor 7 (TLR7) stimulation are higher in women. The precise mechanisms driving these sex differences in immunity are unknown. To investigate possible genetic factors, we quantify escape from X chromosome inactivation (XCI) for TLR7 and four other genes (RPS6KA3, CYBB, BTK, and IL13RA1) at the single plasmacytoid dendritic cell (pDC) level. We observe escape from XCI for all investigated genes, leading to biallelic expression patterns. pDCs with biallelic gene expression have significantly higher mRNA levels of the respective genes. Unstimulated pDCs with biallelic TLR7 expression exhibit significantly higher IFNα/β mRNA levels, and IFNα exposure results in significantly increased IFNα/β protein production by pDCs. These results identify unanticipated heterogeneity in escape from XCI of several genes in pDCs and highlight the important contribution of X chromosome factors to sex differences in type I IFN responses, which might explain observed sex differences in human diseases.Turbulence facilitates fast energy/information transfer across scales in physical systems. These qualities are important for brain function, but it is currently unknown if the dynamic intrinsic backbone of the brain also exhibits turbulence. Using large-scale neuroimaging empirical data from 1,003 healthy participants, we demonstrate turbulent-like human brain dynamics. Furthermore, we build a whole-brain model with coupled oscillators to demonstrate that the best fit to the data corresponds to a region of maximally developed turbulent-like dynamics, which also corresponds to maximal sensitivity to the processing of external stimulations (information capability). The model shows the economy of anatomy by following the exponential distance rule of anatomical connections as a cost-of-wiring principle. This establishes a firm link between turbulent-like brain activity and optimal brain function. Overall, our results reveal a way of analyzing and modeling whole-brain dynamics that suggests a turbulent-like dynamic intrinsic backbone facilitating large-scale network communication.Membrane contact sites (MCS) are intracellular regions where two organelles come closer to exchange information and material. The majority of the endoplasmic reticulum (ER) MCS are attributed to the ER-localized tether proteins VAPA, VAPB, and MOSPD2. These recruit other proteins to the ER by interacting with their FFAT motifs. Here, we describe MOSPD1 and MOSPD3 as ER-localized tethers interacting with FFAT motif-containing proteins. Using BioID, we identify proteins interacting with VAP and MOSPD proteins and find that MOSPD1 and MOSPD3 prefer unconventional FFAT-related FFNT (two phenylalanines [FF] in a neutral tract) motifs. Moreover, VAPA/VAPB/MOSPD2 and MOSPD1/MOSPD3 assemble into two separate ER-resident complexes to interact with FFAT and FFNT motifs, respectively. Because of their ability to interact with FFNT motifs, MOSPD1 and MOSPD3 could form MCS between the ER and other organelles. Collectively, these findings expand the VAP family of proteins and highlight two separate complexes in control of interactions between intracellular compartments.The adult mammalian heart has limited capacity for regeneration following injury, whereas the neonatal heart can readily regenerate within a short period after birth. Neonatal heart regeneration is orchestrated by multiple cell types intrinsic to the heart, as well as immune cells that infiltrate the heart after injury. To elucidate the transcriptional responses of the different cellular components of the mouse heart following injury, we perform single-cell RNA sequencing on neonatal hearts at various time points following myocardial infarction and couple the results with bulk tissue RNA-sequencing data collected at the same time points. Concomitant single-cell ATAC sequencing exposes underlying dynamics of open chromatin landscapes and regenerative gene regulatory networks of diverse cardiac cell types and reveals extracellular mediators of cardiomyocyte proliferation, angiogenesis, and fibroblast activation. selleck chemicals Together, our data provide a transcriptional basis for neonatal heart regeneration at single-cell resolution and suggest strategies for enhancing cardiac function after injury.

Subscribe to MG Dating

MG Dating offers you the opportunity to simply accelerate this process by finding out which is your life partner.

Register Now

Copyright © 2022 MG Dating

0