-
Coffey Niebuhr posted an update 3 weeks, 4 days ago
Consumers have shown more and more interest in high-quality and healthy dairy products and buffalo milk is commercially more viable than other milks in producing superior dairy products due to its higher contents of fat, crude protein, and total solids. Metabolomics is one of the most powerful strategies in molecular mechanism research however, little study has been focused on the milk metabolites in different buffalo species. Therefore, the aim of this study was to explore the underlying molecular mechanism of the fatty synthesis and candidate biomarkers by analyzing the metabolomic profiles. Milk of three groups of buffaloes, including 10 Mediterranean, 12 Murrah, and 10 crossbred buffaloes (Murrah × local swamp buffalo), were collected and UPLC-Q-Orbitrap HRMS was used to obtain the metabolomic profiles. Results showed that milk fatty acid in Mediterranean buffalo was significantly higher than Murrah buffalo and crossbred buffalo. A total of 1837/726 metabolites was identified in both positive and negative electrospray ionization (ESI±) mode, including 19 significantly different metabolites between Mediterranean and Murrah buffalo, and 18 different metabolites between Mediterranean and crossbred buffalo. We found 11 of the different metabolites were both significantly different between Mediterranean vs. Murrah group and Mediterranean vs crossbred group, indicating that they can be used as candidate biomarkers of Mediterranean buffalo milk. Valaciclovir Further analysis found that the different metabolites were mainly enriched in fat synthesis related pathways such as fatty acid biosynthesis, unsaturated fatty acid biosynthesis, and linoleic acid metabolism, indicating that the priority of different pathways affected the milk fat content in different buffalo species. These specific metabolites may be used as biomarkers in the identification of milk quality and molecular breeding of high milk fat buffalo.The resolution of arterial thrombi is critically dependent on the endogenous fibrinolytic system. Using well-established and complementary whole blood models, we investigated the endogenous fibrinolytic potential of the tissue-type plasminogen activator (tPA) and the intra-thrombus distribution of fibrinolytic proteins, formed ex vivo under shear. tPA was present at physiologically relevant concentrations and fibrinolysis was monitored using an FITC-labelled fibrinogen tracer. Thrombi were formed from anticoagulated blood using a Chandler Loop and from non-anticoagulated blood perfused over specially-prepared porcine aorta strips under low (212 s-1) and high shear (1690 s-1) conditions in a Badimon Chamber. Plasminogen, tPA and plasminogen activator inhibitor-1 (PAI-1) concentrations were measured by ELISA. The tPA-PAI-1 complex was abundant in Chandler model thrombi serum. In contrast, free tPA was evident in the head of thrombi and correlated with fibrinolytic activity. Badimon thrombi formed under high shear conditions were more resistant to fibrinolysis than those formed at low shear. Plasminogen and tPA concentrations were elevated in thrombi formed at low shear, while PAI-1 concentrations were augmented at high shear rates. In conclusion, tPA primarily localises to the thrombus head in a free and active form. Thrombi formed at high shear incorporate less tPA and plasminogen and increased PAI-1, thereby enhancing resistance to degradation.Prostatic neoplasia (PN) occurs in 5-7% of dogs with prostatic disease, with castrated dogs having the same or higher prevalence when compared to intact dogs. Considering the promising results achieved by performing contrast-enhanced ultrasound (CEUS) in intact dogs to detect PN, the present study aimed to acquire data on the prostatic perfusion pattern in neutered dogs. CEUS was performed in 64 neutered dogs, using a 5-7.5 MHz linear transducer with coded harmonic capability, dedicated analytical software, and a second-generation contrast agent, SonoVue. After B-mode evaluation was performed to assess mean prostate volume, the CEUS examination was undertaken. The flow of contrast agent was visible 10 s after injection. The subcapsular vessels were highlighted and produced rapid peripheral rim enhancement. Subsequently, the contrast agent reached the prostatic urethra via the parenchymal arterioles and gradually reached the entire prostate. Perfusion peak intensity (PPI) and time to peak (TTP) values were respectively 45.3% and 34.1 s. The measured parameters were compared with those obtained in previous studies on intact dogs with normal and with pathological patterns. In this study, CEUS showed features that may be promising for its use as a diagnostic tool for early detection of PN in neutered dogs.Recently, there has been increased use of calcium-nitrite and calcium-nitrate as the main components of chloride- and alkali-free anti-freezing agents to promote concrete hydration in cold weather concreting. As the amount of nitrite/nitrate-based accelerators increases, the hydration of tricalcium aluminate (C3A phase) and tricalcium silicate (C3S phase) in cement is accelerated, thereby improving the early strength of cement and effectively preventing initial frost damage. Nitrite/nitrate-based accelerators are used in larger amounts than usual in low temperature areas below -10 °C. However, the correlation between the hydration process and strength development in concrete containing considerable nitrite/nitrate-based accelerators remains to be clearly identified. In this study, the hydrate composition (via X-ray diffraction and nuclear magnetic resonance), pore structures (via mercury intrusion porosimetry), and crystal form (via scanning electron microscopy) were determined, and investigations were performed to elucidate the effect of nitrite/nitrate-based accelerators on the initial strength development and hydrate formation of cement. Nitrite/nitrate-AFm (aluminate-ferret-monosulfate; AFm) was produced in addition to ettringite at the initial stage of hydration of cement by adding a nitrite/nitrate-based accelerator. The amount of the hydrates was attributed to an increase in the absolute amounts of NO2- and NO3- ions reacting with Al2O3 in the tricalcium aluminate (C3A phase). Further, by effectively filling the pores, it greatly contributed to the enhancement of the strength of the hardened cement product, and the degree of the contribution tended to increase with the amount of addition. On the other hand, in addition to the occurrence of cracks due to the release of a large amount of heat of hydration, the amount of expansion and contraction may increase, and it is considered necessary to adjust the amount used for each concrete work.